- UNCLASSIFIED e
£ZUP; 1 cussmu 10h OF THIS PAGL (Wrer Dazs Entered”)

AD-A208 540

REPORT DOCUMENTATION PAGE v TR e NN
1. REPORT MUMBiR [2. GOV ACCESSION NO. [3. RECIPIENTI'S CATALOG NUmMEER T
- TITLE (and Subtitie) 5. TYPE OF REPOR! & PERIOD CCVERED
Ada Compiler Validation Summary Report: y.,.4iy 31 March 1989 - 1 Dec. 1990

Corporation, VADS ISI Self, Version 5.7, IS68K (Integrate§s. PLRFORMING “DRG. R{POR: WUMELR
Solutions) (host & target), 890331W1.10048 '
. AUTHOR(s) 8. CONTAALT OR GRANT NUMEER(s)
Jright-Patterson AFB
Javton, OH, USA

. PERFORMING ORGAKIZATION AND ADDRLSS 10. PROGRAM [EMINT PRODECTT, TASHK

AREA & WORK UNIT WUMELRS
iright-Patterson AFB
Jayton, OH, USA

CONTROLLING OFFICE WAME AND ADDRESS 12. ®LPORT DATE

Ada ngnt Program Office £ Def

United States Department © efense DT 10T 0 L 7 38

wWashington, DC 20301-3081 M vt

14, MONITORING AGENCY NAM{ & ADDRESS(/f gifferent from Controling Otfice) 15, SECURITY (LASS (ofthisreport)
UNCLASSIFIED

Wright-Patterson AFB 156, QECLASSITICATION DONAGRADING

Dayton, OH, USA neoult N/A

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBLUTION STRIEMINT (ofthe adstractenteren inB.ock 20 1 o:ferent from Repo=)

URCLASSIFIED DT]‘ :

ELECTE

18. SUPF_EMINTARY NOTES

1 D

5. KEYWDRDS (Continue onreverse 5:0c f necessany anddent:fy by block humbder)

Rda Procremming language, Acda Compiler Validation Sumrmary Report, Aca
Cer pxler Valicdation Capability, ACVC, Valicdation Testing, Aca
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-CTD-
1815A, Ada Joint Program Office, AJPO

20. ABSYRALT (Continue onreverse side tf necessary and dentif) by block number)

VADS ISI Self, Version 5.7, Verdix Corporation, Wright-Patterson AFB, IS68K (Integrated
Solutions) under UNIX 4.3 BSD (host and target), ACVC 1.10

DD YU 9473 gDiTion OF 3 NDV B5 1S OBSOLETE

1A% 73 S/N 0102-1F-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF TRIS PALL (vwhenDats Entered;
5:*) AN - s 4‘.'
VY os , i ’%

AVF Control Number: AVF-VSR-242.0489
89-01-31-VRX

Ada COMPILER
VALTDATION SUMMARY REPORT:
Certificate Number: 890331W1.100L8
Verdix Corporation
VADS ISI Self, Version 5.7
IS68K (Integrated Solutions)

Completion of On-Site Testing:
31 March 1989

Prepared By:
Ada Validation Facility
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office
United States Department of Defense
Washington DC 20301-3081

Accesion For

———

— /|

NTIS CRA& N
a

0

CTiC TAB
Unanaoinced
Justification
i - -]
/ wl
i By . " Ba
| Diatibition | =°§
e e
Avcaiiability Codes
T T e —
i Al ard/or
Dist " /

Special

\/HL

L

Ada Compiler Validaticn Summary Report:

Compiler Name: VADS ISI Self, Ver-ion 5.7

Certificate Number: B90331W1.10048

Host: IS68K (Integrated Solutions) under
UNIX 4.3 BSD

Target: IS68K (Integrated Solutions) under
UNIX 4.3 BSD

Testing Completed 31 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

A N L) ./—«
il T A~

Ada Validation Facility

Steve P. Wilson

Technical Director

ASD/SCEL

Wright-Patterson AFB OH 45L33-6503

idation Organization
Dr. John ¥, Vrajer
Institute for Defense hLnalyses
Liexandria VL 22311

A / A
| / I
/ s

-
z3a Joint Frogram Lifice
Dr. Sohn Solomond
Director
Washington D.C. 20301

Ada Compiler Validation Summary Report:

Compiler Nage: VADS ISI Self, Version 5.7

Certificate Number: 890331W1.10048

Host: IS68K (Integrated Solutions) under
UNIX 4.3 BSD

Target: IS68K (Integrated Solutions) under
UNIX 4.3 BSD

Testing Completed 31 March 1989 Using ACVC 1.10

This report has been reviewed and is approved.

. o
e ,

e ’ﬂ, 7
ol i T s~
Ada Validation Facility
teve P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB O U45433-6503

’

Ada Vzlicdation Organizati

Dr. John ¥. Kramer

Institute for Defense Anz)}fses
Alexandria VA 22311

242 Joint Program Cifice
Dr. John Soloumond
Director

Washington D.C. 20301

CHAPTER 1

T Y
. .
U EWN -

n

CHAPTER

[AC V)
.
N

CHAPTER

w

NIV W -

WwWwwWwwwwwwwww

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

1
.2
3

TABLE OF CONTENTS

INTRODUCTION

PURPOSE OF THIS VALIDATION SUMMARY REPORT . . .
USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES.: ¢ o v ¢ o o ¢ o o o o o s o o o o »
DEFINITION OF TERMS . . ¢ ¢ ¢ ¢ o ¢ o ¢ o s o &
ACVC TEST CLASSES &+ ¢ & ¢ ¢ o ¢ ¢ o o o o o o &

CONFIGURATION INFORMATION

CONFIGURATION TESTED. + ¢ « ¢ o o« « ¢ « o o o o
IMPLEMENTATION CHARACTERISTICS. . ¢« « & o « « &

TEST INFORMATION

TEST RESULTS . . L L) L] L] L) L] L L) L - .
SUMMARY OF TEST RESULTS BY CLASS. « . .

SUMMARY OF TEST RESULTS BY CHAPTER.
WImDRAWN TESTS L] . L] L] . L] . L] L] . . L]
INAPPLICABLE TESTS. .« « ¢« « « « & . o

TEST, PROCESSING, AND EVALUATION MODIFICATIONS.
ADDITIONAL TESTING INFORMATION. . .
Prevalidation . « + « & & o ¢ » o o = & &«
Test Method . ¢« ¢ ¢ & o o ¢ « s &
Test Site ¢« ¢ v ¢ ¢ o« o o o & .

DECLARATION OF CONFORMANCE
APPENDIX F OF THE Ada STANDARD
TEST PARAMETERS

WITHDRAWN TESTS

PO Y
]
Ewwmnmn

"I\.)f\)
N —

] 1 11
NNV NN -

wwwwwu‘uwwww

CHAPTER 1

INTRODUCTION

This Validation Summary Report (VSR> describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability , (ACVC).. An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
--given in this report. "

The information in this report is derived from the test results produced
during vzlidation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure conformity
of +the compiler to the Ada 3tandard by testing that the compiler properly
implements 1legzl language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation-dependent but is permitted by the Ada Standard. Six classes
of tests are used. These tests are designed to perform checks at compile
time, at link time, and during execution.

1-1

INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constiructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, 1Inc. under the
direction of the AVF according to procedures established by the Ada Joint
Program Office and administered by the Ada Validation Organization (AVO).
On-site testing was completed 31 March 1989 at Aloha OR.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C.#552). The results of this validation apply only to the computers,
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office

OUSDRE

The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH U45433-6503

1-2

INTRODUCTION

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1986.

4, Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC

Ada
Commentary

Ada Standard
Applicant

AVE

AVO

Compiler

The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

An Ada Commentary contains all information relevant to the
point addressed by a comment on the Ada Standard. These
comments are given a unique identification number having th-
form AI-ddddd.

ANSI/MIL-STD-18154, February 1983 and ISO 8652-1¢87.

The agency requesting validation.

The Ada Validation Facilitv. The AVF is responsitle for
conducting compiler wvalidations according to procedures

contained in the Ada Compiler Validation Procedures and
Guidelines.

The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AV0 provides administrative and technical
support for Ada validations to ensure consistent practices.

A processor for the Ada language. In the context of this
report, a compiler 1is any language processor, including

1-3

*
INTRODUCTION

cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.
Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected

result.
Target The computer for which a compiler generates code.
Test A program that checks a compiler's conformity regarding a

particular feature or a combination of features t> the Ada
Standard. 1In the context of this report, the term is used to
designate a single test, which may comprise one or more

files.
Withdrawn An ACVT test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneocus use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both 1legal and illegal Ada programs structured into six test
classes: A, B3, C, D, E, and L. The first letter of a test name identifies
the c¢lass to which it belongs. Class A, C, D, and E tests are executable,
and special prograr units are used to report their results during
execution. Class B tests are expected Lo produce compilation errors.
CTlass L tests are expected to produce compilation or link errors because of
the way in which a program library is used at link time.

Class A tests ensure the success?:l compilation ¢of lega: Ada prograns with
certain language constructs which <2annot be verified at compile time.
There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation 1listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every

1-4

INTRODUCTION

illegal construct that it contains is detected by the compiler.

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test 1is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not =zllowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECK_FILE, support
the self-checking features of the executable tests. The pacitage REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK_FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of REPORT and CHECX_FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attemptecd.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate

1-5

INTRODUCTION

tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A 1list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implemen-ation is
considered each time the implementation is validated. A test that is
inapplicable for one validation 1is not necessarily inapplicable for a
subsequent validation. Any te=st that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED
The candidate compilation system for this validation was tested under the
following configuration:
Compiler: VADS ISI Self, Version 5.7
ACVC Version: 1.10
Certificate Number: B890331W1.10048
Host Computer:
Machine: IS68K (Integrated Solutions)
Operating System: UNIX 4.3 BSD

Memory Size: & Megubdytes

Target Computer:

Machine: IS68K {Inregrated Solut:ions)
Operating System: UNIX 4.3 BSD
Memory Size: 6 Megabytes

2-1

CONFIGURATION INFORMATION

2.2 TMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other c¢lasses also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing 723
variables in the same declarative part. (See test D29002K.)

(2) The compiler correctly processes tests containing 1loop
statements nested to 65 levels. (See tests DS5A03A..H (8
tests).)

(3) The compiler correctly processes tests containing block
statements nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D6UDOSE..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined types
TINY_INTEGER, SHORT_INTEGER, and SHORT _FLOAT in package
STANDARD. (See tests B86001T..Z (7 tests).)

¢. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

(1) None of the default initialization expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same precision
as the base type. (See test C35712B.)

(3} This implementation uses no extra bits for extra precision and
uses all extra bits for extra range. (See test C35903A.)

CONFIGURATION INFORMATION

(4) Sometimes CONSTRAINT_ERROR is raised when an integer literal
operand in a comparison or membership test is outside the
range of the base type. (See test CUS5232A.)

(5) Sometimes NUMERIC_ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test CU5252A.)

(6) Underflow is gradual. (See tests CU5524A..Z.)

Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..Z.)

(2) The method used for rounding to longest integer is round to
even., (See tests CUb6012A..Z.)

(3) The method used for rounding to integer in static universal
real expressions is round to even. (See test CUADTUA.)

Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a ‘'LENGTH that exceeds
TANDARD.INTEGER'LAST and/or SYSTEM.MAX INT.

For this implementation:

{1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAX_INT components raises no exception. (See test
£3600324.)

(2) NUMERIC_ERRCX is raised when 'LENGTH is applied to a null
array type with INTEGER'LAST + 2 components. (See test
C36202A.)

(3) NUMERIC ERROR is raised when 'LENGTH is applied to a null
array type with SYSTEM.MAX INT + 2 components. (See test
€36202B.)

(4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST
raises CONSTRAINT_ERROR when the array type is declared. (See
test C52103X.)

—_— e e

CONFIGURATION INFORMATION

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components ralses CONSTRAINT_ERROR when the array
type is declared. (See test C5210L4Y.)

(6) A null array with one dimension of iength greater than
INTEGER'LAST may raise NUMERIC_ERROR or CONSTRAINT_ERROR
either when declared or assigned. Alternativelv, an
implementation may accept the declaration. However, lengths
must match 1n array slice assignments. This implementation
raises CONSTRAINT_ERROR when the array type is declared. (See
test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT_ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in 1its entirety before CONSTRAINT_ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C520134.)

Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, all
choices are evaluated before checking against the index type.
(See tests CU3207A and CL3207E.)

(2) In ¢the -evaluation of an aggregate containing subaggregates,
all choices are evaluated before being checked fo.- identical
bounds. (See test EU3212B.)

(3) CONSTRAINT_ERROR is raised after all choices are evaluated
when a bound in a non-null range of a non-null aggregate does
not belong to an index subtype. (See test E43211B.)

Pragmas.

(1) The pragma INLINE is supported for functions and procedures.
(See tests LA3004A..B, EA3004C..D, and CA3004E..F.)

2-4

CONFIGURATION INFORMATION

i. Generics

(1) Generic specifications and bodies can be compiled in separate
compilations. (See tests CA1012A, CA2009C, CA2009F, BC3204C,
and BC3205D.)

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA30114.)

J- Input and output

(1) ™e package SEQUENTIAL IO can be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D, and EE2201E.)

(2) The package DIRECT IO can be instantiated with unconstrained
array types and record types with discriminants without
defaults. (See tests AE2101H, EE2401D, and EE2401G.)

(3) Modes IN_FILE and OUT_FILE are supported for SEQUENTIAL_IO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

(4) Modes IN_FILE, OUT_FILE, and INOUT_FILE are supported for
DIRECT_IO. (See tests CE2102F, CE2102I..J, CE2102R, CE2102T,
and CE2102V.)

(5) Modes IN_FILE and OUT_FILE are supported for text files. (See
tests CE3102E and CE3102I..K.)

(6) RESET and DELETE operations are supported for SEQUENTIAL_IO.
(See tests CE2102G and CE2102X.)

(7) RESET and DELETE operations are suppcrte. for DIRECT IC. (See
tests CE2102K and CE2102Y.)

’,

(8) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G, CE3104c, CE3110A, and CE311U4.)

(9) Overwriting to a sequential file truncates to the last element
written. (See test CE2208B.)

(10) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(11) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(12) Temporary text files are given names and deleted when closed.
(See test CE31124.)

2-5

CONFIGURATION INFORMATION

(13) More than one internal file can be associated with each

external file for sequential files when writing or reading.
(See tests CE2107A..E, CE2102L, CE2110B, and CE2111D.)

(14) More than one internal file can be associated with each

external file for direct files when writing or reading. (See
tests CE2107F..H (3 tests), CE2110D, and CE2111H.)

) More than one internal file can be associated with each

external file for text files when reading or writing. (See
tests CE3111A..E, CE3114B, and CE3115A.)

2-6

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 43 tests had been withdrawn because of test errors. The AVF
determined that 329 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for 201
executable tests that use floating-point precision exceeding that supported
by the implementation . Modifications to the code, processing, or grading
for 10 tests were required to successfully demonstrate the test objective.
(See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conforrity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C Y B L

Passed 129 1132 1993 17 28 46 335

Inapplicable 0 6 323 0 0 0 320

Withdrawn 1 2 34 0 6 0 u3

TOTAL 130 1140 2350 17 34 46 3717

B
TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 577 545 245 172 99 161 332 137 36 252 292 299 3345
Inappl 14 72 135 3 0 0 5 1 0 0 0 77 22 329

Wdrn 1 1 0 0 0 0 0 1 0 0 1 35) 43

TOTAL 213 650 680 248 172 99 166 334 137 36 253 4OW 325 3717

3.4 WITHDRAWN TESTS

The following 43 tests were withdrawn from ACVC Version 1.10 at the time of this

validation:

E28005C A39005G B97102E BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2AT3A CD2AT73B CD2AT73C CD2A73D CD2AT6A
CD2AT76B CD2AT6C CD2AT6D CD2AB1G Ch2483G CD2A84M
CD2ABUN CD2B15C CD2D11B CD5007B CD50110 EDT7004B
EDT005C ED7005D ED7006C EDT7006D CD7105A CD7203B
CD7204B CD7205C CD7205D CE21071I CE3111C CE3301A
CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to a2ll compilers because they make use of features that
a compiler is not required by the Ada Standard to support. Others mav depend on
the result of another test that 1is either inapplicable or withdrawn. The
applicability of & test to an implementation is considered each +time a
validation is attempted. A test that is inapplicable for one vzlidation attempt
is not necessarily inapplicable for a subsequent attempt. For this validation
attempt, 329 tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAX DIGITS:

c24113L..Y C35705L. .Y C35706L..Y C35707L. .Y
C35708L..Y C35802L..2 cus5241L..Y Clis321L. .Y
cusu21L..Y Cu5521L. .2 Cuss24L. .2 Cis621L..Z

3-2

TEST INFORMATION

c4sbl4IL. .Y cué012L..2

£35702B and B86001U are not applicable because this implementation
supports no predefined type LONG_FLOAT.

The following 16 tests are not applicable because this implementation
does not support a predefined type LONG_INTEGER:

cus231C cu45304C ci4s5502C C45503C c4s50uC
CU550UF cus5611C CU5613C Clu5614C Cclus631C
C45632C B52004D C55B07A B55B09C B8600 W
CDT101F

C4553M..P (4 tests) and CUsS53M..P (U4 tests) are not applicable
because the value of SYSTEM.MAX MANTISSA 1s less than 47,

B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

B56001Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG_FLOAT, or SHORT_FLOAT.

C86001F is not applicable because, for this implementation, the package
TEXT_IO 1is dependent upon package SYSTEM. These tests recompile
package SYSTEM, making package TEXT_I0, and hence package REPORT,
obsolete.

C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

£D1009C, CDZA41A..B ‘2 tests), CD2ALTE, and CD2A42A..J (10 tests) are
not applicable because this implementation does not support size
clauses for floating point types.

CD2A61TI and CD2A51J are not applicable because this imolementation does
not support size clauses for array types, which imply compression, with
component types of composite or floating point types. This
implementation requires an explicit size clause on the component type.

CD2AB4B..I (B8 tests) and CD2A84K..L (2 tests) are not applicable
because this implementation does not support size clauses for access
types.

CD2491A..E (5 tests), CD5012J, CDS5013S, and ZD5014S are not applicable
because this implementation does not support size clauses for tasks or
task types.

The following U42 tests are not applicable because this implementation
does not support an address clause when a dynamic address is applied to
a variable requiring initialization:

CD50038B..H CDS5011A..H CD5011L. .N CD5011Q

3-3

aa.

ab.

ac.

ad.

TEST INFORMATION

CD5011R CDS5012A..1 CD5012L CD5013B
CD5013D CDS013F CD5013H CD5013L
CD5013N CD5013R CD5014T, .X

CE2102D is inapplicable because this implementatior supports CREATE
with IN_FILE mode for SEQUENTIAL_IO.

CE2102E 1is inapplicable because this implementation supports CREATE
with OUT_FILE mode for SEQUENTIAL IO.

CE2102F is 1inapplicable because this implementation supports CREATE
with INOUT_FILE mode for DIRECT_IO.

CE2102I is 1inapplicable because this implementation supports CREATE
with IN_FILE mode for DIRECT_ IO.

CE2102J 4is 1inapplicable because this implementation supports CREATE
with OUT_FILE mode for DIRECT_IO.

CE2102N is inapplicable because this implementation supports OPEN with
IN_FILE mode for SEQUENTIAL_IO.

CE21020 is inapplicable because this implementation supports RESET with
IN_FILE mode for SEQUENTIAL_IO.

CE2702P 1is inapplicable because this implementation supports OPEN with
OUT_FILE mode for SEQUENTIAL IO.

CE2102Q is inapplicable because this implementation supports RESET with
OUT_FILE mode for SEQUENTIAL_IO.

CE2102R is inapplicable because this implementation supports OPEN with
INOUT_FILE mode for DIRECT_IO.

T el el

CE2102S is inapplicable because this implementation supports RESIT wit!
INOUT_FILE mode for DIRECT IO.

CE2102T 1is inapplicable because this implementation supports OPEN with
IN_FILE mode for DIRECT_IO.

CE2102U is inapplicable because this implementation supports RESET with
IN FILE mode for DIRECT_IO.

CE2102V is inapplicable because this implementation supnorts open with
OUT_FILE mode for DIRECT_IO.

CE2102W is inapplicable because this implementation supports RESET with
OUT_FILE mode for DIRECT_IO.

CE3102E 1is inapplicable because this implementation supports CREATE
with IN_FILE mode for text files.

CE3102F 1is inapplicable because this implementation supports RESET for

3-4

TEST INFORMATION

text files.

ae., CE3102C 1is inapplicabdle because this implementation supports deletion
of an external file for text files.

af. CE3102I is inapplicable because this implementation supports CREATE
with OUT_FILE mode for text files.

ag. CE3102J 1is inapplicable because this implementation supports OPEN with
IN_FILE mode for text files.

ah. CE3102Z is inapplicable because this implementation supports OPEN with
OUT_FILE mode for text files.

ai. CE3115A is not applicable because resetting of an external file with
OUT_FILE mode is not supported with multiple internal files associated
with the same external file when they have different modes.

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It 1is expected that some tests will require modifications of code, processing,
or evaluation in order to compensate for legitimate implementation behavior.
Modifications are made by the AVF in cases where legitimate implementation
behavior prevents the successful completion of an (otherwise) applicable test.
Examples of such modifications include: adding a length clause to alter the
default size of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an executable test
demonstrate conforming behavior that wasn't anticipated by the test (such as
raising one exception instead of another).

Modifications were required for 10 tests.
The following tests were split because syntax errors at one point resulted in
the compiler not detecting other errors in the test:

B24009A B33301B B380034 B38003B B38009A B38009B

B412024 B91001H BC1303F BC3005B

3.7 ADDITIONAL TESTING INFORMATION

3-5

TEST INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced by the
VADS ISI Self was submitted to the AVF by the applicant for review. Analysis of
these results demonstrated that the compiler successfully passed all applicable
tests, and the compiler exhibited the expected behavior on all inapplicable
tests.

3.7.2 Test Method

Testing of the VADS ISI Self using ACVC Version 1.10 was conducted on-site by a
validation team from the AVF. The configuration in which the testing was
performed is described by the following designations of hardware and software
components:

Host computer: IS68K (Integrated Solutions)
Host operating system: UNIX 4.3 BSD

Target computer: IS68K (Integrated Solutions)
Target operating system: UNIX 4.3 BSD

Compiler: VADS ISI Self, Version 5.7

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of implementation-specific
values were customized before being written to the magnetic tape. Tests
requiring modifications during the prevalidation testing were included in their
modified form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host computer.

After the test files were loaded to disk, the full set of tests was compiled,
linked, and all executable testis were run on the IS68 (Integrated Solutions).
Results were printed from the from the host computer.

The compiler was tested using command scripts provided by Verdix Corporation and
reviewed by the validation team. The compiler was tested using the following
default option settings:

OPTION EFFECT

-0 Level one optimization.
] No suppression.

-W Warnings suppressed.

Tests were compiled, 1linked, and executed (as appropriate) using 1 computer.
Test output, compilation listings, and job logs were captured on magnetic tape
and archived at the AVF. The listings examined on-site by the validation team
were also archived.

3-6

TEST INFORMATION

3.7.3 Test Site

Testing was conducted at Aloha OR and was completed on 31 March 1989,

APPENDIX A

DECLARATION OF CONFORMANCE

Verdix Corporation has submitted the following Declaration
of Conformance concerning the VADS ISI Self.

DECLARATION OF CORFURMANCT

Compiler Implemeator: VERDIX Corporation
Ada Talidation Facility: ASD/SCEL, Wright-Patterson AFB CH % -5
Ada Compiler Validation Captbi.uty‘ (ACTC) Verzion: 1.10 5433-6503

hase Configuration

Base Compiler Name: yaps 1sI Self Version: 5.7
Host Arcnitecture ISA: 1S68K (Integrated OSAVER #: UNIX 4.3BSD
Target Architecturs ISA: Solutions) OSAVER #: Same as host

(Same as host)

Inplesentor’s Dealarstion

I, the updersigned, representing vgmpIX Corp./y bave im
.’ plementesd o deliderats
extensions to the Ada Language Standard ANSI/MIL-STD-18154 in the compiler(s) listed
4n this declaraticn. I declars that VERDIX is the owner of record of the Ada
language compiler(s) 1isted above and, as such, is responsible for maintaiming said
:apu;(ai in co_ntonnnco t&(: ANSI/MIL-STD=-1815A. All certificates and registrations
or anguage coapiler(s) listed in this declarat hall
ouner's corporats name. ton 3 be made only in the
. //‘ p . ‘//’ . . ; /__ /‘I \ /l
SIS e ;/_,/:/,,25;/ ! Datas 2SR /2”—
s:.episan P. Zaigler (. ° -7
Vice-President ~
Ada Products Division

Omer’s Declaration

I, the undersigned, representing VERDIX taks full responsidili tioca
p : Y for implemsnta
and maintenance of the Ada ocompiler(s) listed above, and agree t.: the pubdblic
disclosure of the fizal Validation Summary Bsport. I declare that all of the Adz
language compilers listed, and their host/target perlorzance liznce vt
the Ada Language Standard AXSI/MIL-STD-1815A. ire in compll i

\

PO /

i 7 ‘/3‘ S, ~ . R /
AL S A e A peter_ A S s Z S
Stephen . Zcigier o -
: vice-President“
Ada Products Division
A-2

APPENDIX B

APPENDIX F OF THE Ada STANDARD

‘The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristies of the VADS 1ISI Self, Version 5.7, as described in this
Appendix, are provided by Verdix Corporation. Unless specifically noted
otherwise, references in this Appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package
STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -214TuB83648 .. 2147483647,
type SHORT_INTEGER is range -32768 .. 32767;
type TINY INTEGER is range -128 .. 127;
type FLOAT is digits 15 range
-16#0, IFFFEFFFFFFFFF#E102Y4 .. 16#0.1FFFFFFFFFFFFF#E102%
type SHORT FLOAT is digits 6 range -16#C.FFFFFF#E1I28 .. 164#0.FFFFFFAEI2S;

type DURATION .s delta 0.001 range -2147483.628 ., 2147483.6U7;

end STANDARD;

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas
1.1. INLINE_ONLY Pragma

The INLINE_ONLY pragma, when used in the same way as pragma INLINE, indicates to the compiler
that the subprogram must always be inlined. This pragma also suppresses the generation of a callabie
version of the routine which saves code space. If a uscr erroneously makes an INLINE_ONLY subpro-
gram recursive a warmning message will be emitted and an PROGRAM_ERROR will be raised at run
ume.

1.2. BUILT_IN Pragma

The BUILT_IN pragma is used in the impiementation of some predefined Ada packages. but provides
no uscr access. It is used only to implement code bodies for which no actual Ada body can be pro-
vided, for example the MACHINE_CODE package.

1.3. SHARE_CODE Pragma

The SHARE_CODE pragma takes the name of a generic instantiation or a generic unit as the first argu-
ment and one of the identifiers TRUE or FALSE as the second argument. This pragma is only allowed
immediately at the place of a declarative item in a declarative part or package specification, or after a
library unit in 2 compilation, but before any subsequcnt compilation unit.

When the first argument is a generic unit the pragma applies to all instantations of that generic. When
the first argument is the name of a generic instantiation the pragma applies only to the specified instan-
uauon, or overloaded instantiations.

If the second argument is TRUE the compiler will try 1o share code generated for a generic instantia-
tion with code generated for other instantiations of the same generic. When the second argument is
FALSE each instantiation will get a unigue copy of the generated code. The extent to which code is
sharcd between instantiations depends on this pragma and the kind of generic formal parameters
declared for the generic unit

The name pragma SHARE_BODY is also recognized by the implementation and has the same effect as
SHARE_CODE. Itis included for compatability with earlier versions of VADS.

14. NO_IMAGE Pragma

The pragma suppresses the generauon of the image array used for the IMAGE auribute of enumeration
types. This eliminates the overhead required to store the array in the executable image. An auempt to
use the IMAGE attribute on a type whose image array has been suppressed will result in a compilation
waming and PROGRAM_ERROR raised at run time.

1.5. EXTERNAL_NAME Pragma

The EXTERNAL_NAME pragma takes the name of a subprogram or variabic defined in Ada and
allows the user o specify a different external name that may be used 1o reference the entity from other
languages. The pragma is allowed at the place of a declarative item in a package specification and
must apply to an object declared earlier in the same package specification.

1.6. INTERFACE_NAME Pragma

The INTERFACE_NAME pragma takes the name of a a variable or subprogram defined in another
language and allows it 10 be referenced directly in Ada. The pragma will replace all occurrences of the
variable or subprogram name with an external rcference to the second. link_argument. The pragma is
allowed at the place of a declarative item in a package specificaton and must apply to an object or sub-
program declared earlier in the same package specificaion. The object must be declared as a scalar or
an access type. The object cannot be any of the following:

a loop variable,

a constant,

an initialized variable,

an array, or

a record.

1.7. IMPLICIT_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument This pragma is only allowed within a
machine code procedure. It specifies that implicit code generated by the compiler be allowed or disal-
lowed. A warning is issued if OFF is used and any implicit code needs to be generated. The default is
ON.

1.8. OPTIMIZE_CODE Pragma

Takes one of the identifiers ON or OFF as the single argument. This pragma is only allowed within a
machine code procedure. It specifies whether the code should be optimized by the compiler. The
default is ON. When OFF is specificd, the compiler will gencrate the code as specified.

2. Implementation of Predefined Pragmas
2.1. CONTROLLED
This pragma is recognized by the implementation but has no effect

2.2. ELABORATE
This pragma is implemented as described in Appendix B of the Ada RM.

23. INLINE
This pragma is umplemented as described in Appendix B of the Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C’ and FORTRAN functions. The Ada subprogrars can be either func-
uons or procedures. The types of parametcrs and the result type for functions must he scalar, access or
the predefined type ADDRESS in SYSTEM. All parameters must have mode IN. Record and array
objects can be passed by reference using the ADDRESS aunbuic.

25, LIST

This pragma is implemented as described in Appendix B of the Ada RM.

2.6. MEMORY_SIZE

This pragma is recognized by the implementation. The impicmentation does not allow SYSTEM to be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.7. NON_REENTRANT

This pragma takes one argument which can be the name of cither a Library subprogram or a subprogram
declared immediately within a library package spec or body. [t indicates to the compiler that the sub-
program will not be called recursively allowing the compiler to perform specific opuimizations. The
pragma can be applicd to a subprogram or a set of overloaded subprograsm within a package spec or

B-3

package body.

2.8. NOT_ELABORATED

This pragma can only appear in a library package specification. It indicates that the package will not
be elaborated because it is either part of the RTS, a configuration package or an Ada package that is
referenced from a language other than Ada. The presence of this pragma suppresses the generation of
elaboration code and issues warnings if elaboration code is required.

29. OPTIMIZE

This pragma is recognized by the implementation but has no effect.

2.10. PACK

This pragma will cause the compiler to choose a non-aligned rcpresentation for composite types. It will
not causes objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the Ada RM.

2.12. PASSIVE
The pragma has three forms :

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task type declared immediately within a library
package spec or body. The pragma dirccts the compiler 1o optimize cerain tasking operations. It is
possible that the statements in a task body wiil prevent the intended optimization, in these cases a warn-
ing will be generated at compile time and will raise TASKING_ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the Ada RM.

2.14. SHARED
This pragma is recognized by the implemcntation but has no effect.

2.15. STORAGE_UNIT

This pragma is recognized by the implementation. The implementation does not allow SYSTEM 1o be
modified by means of pragmas, the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except that RANGE_CHECK and DIVISION_CHECK can-
not be supressed.

2.17. SYSTEM_NAME

This pragma is recognized by the implementation. The implcmentation docs not allow SYSTEM 1o be
modified by means of pragmas, the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes
3.1. P'REF

For a prefix that denotes an object, a program unit, a label, or an entry:

e

This attribute denotes the effective address of the first of the storage units allocated to P. For a subpro-
gram, package, task unit, or label, it refers to the address of the machine code associated with the
corresponding body or statement. For an entry for which an address clause has been given, it refers to
the corresponding hardware interrupt. The attribute is of the type OPERAND defined in the package
MACHINE_CODE. The auribute 1s only allowed within a machine code procedure.

See section F.4.8 for more informaton on the use of this attribute.
(For a package, task unit, or entry, the 'REF attribute is not supported.)

4. Specification Of Package SYSTEM

witd UNSJGNED_TYFES;
package SYSTEM s

pragms suppress(ALL_OECKS):
progms suppres s (EXCEPTION TABLES):
pragma Bot_claborstsd;

type NAME is (is68k):

SYSTEM_NAME : constant NAVE := i968k;
STORAGE UNIT : copstsnt :e B
MEMDRY_SIZE : constant = 16_777_216;

-- System-Dependent Named Numbers

MIN_INT : cobsiant := -2 _147_483_64%;
MAX_INT > consispl = I_147_483_647;
MAX DIGITS : copbatant := 15
MAX_MANTISSA : consisat = 31

FINE_DELTA : constsat := 2.0°°(-31):
TIXX : constant := 0.01;

-- Other System-dependent Decisrstions
subtype PRIORITY is [INTEGER tange 0 .. 99:
MAX REC_SIZE : integer :m» 64°1024;

type ADDRESS :is private;

funetion °>° (A: ADDRESS: B: ADDRESS) return BOOLEAN:
functior °<* (A: ADDRESS; B: ADDRESS) rcturn BOOLEAN:
functior “>=*(A: ADDRESS: R: ADDRESS) return BOOLEAN;
functior "<=°(A: ADDRESS; B: ADDRESS) return BOOLEAN:
fubction *-* (A: ADORESS; B: ADDRESS) return INTEGER:
funct.or *+" (A: ADDRESS:. 1. INTEGER) return ADDRESS:
function “-° (A: ADORESS: {: INTEGER) recturn ADORESS;

fupetion *«* (1. UNSIQED _TYPES.UNSIGNED_INTEGER) return ADDRESS:

function MEMDRY ADCRES S

(1: UNSIGNED_TYPES .UNSINED_ INTEGER) return ADDRESS renames “+°
NO_ADDK . constant ADDRESS;
private
1ype ADDRESS i3 oew UNSIGNED TYPES UNSIGNED INTEGER;
NO_ADDR : coostant ADDRESS := 0
pragms BUILT_IN(®*>°);
pragmm BUILT_IN(°<*);
pragm BUILT_(N(°*>=°):
progma BUILT_[N(°<s®);
pragme BUILT_IN(®-*):
pragms BUILT_IN("+");

end SYSTEM:

S. Restrictions On Representation Clauses

5.1. Pragma PACK

In the absence of pragma PACK record components are padded so as to provide for efficient access by
the target hardware, pragma PACK applied to a record eliminate the padding where possible. Pragma
PACK has no other effect on the storage allocated for record components a record representation is
required.

5.2, Size Clauses

For scalar types a representation clause will pack to the number of bits required o represent the range
of the subtype. A size clause applicd to a record type will not cause packing of components; an expli-
cit record representation clause must be given to specify the packing of the components. A size clause
applied to a record type will cause packing of components only when the component type is a discreic
type. An emror will be issucd if there is insufficient space allocated. The SIZE attribute is not sup-
ported for task, access, or floating point types.

§.3. Address Clauses

Address clauses are only supported for variables. Since default iniualization of a variable requires
evaluation of the variable address elaboration ordering requirements prohibit inititalization of a variables
which have address clauses. The specified address indicates the physical address associated with the
variable.

5.4. Interrupts

interupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supportied for the following entities:

Packages
Tasks
Labels
Entnes

5.6. Machine Code Insertions
Machine code insertions are supporicd.
The general definition of the package MACHINE_CODE provides an asscmbly language interface for

the wrget machine. It provides the neccssary record typets) needed in the code staicment, an enumera-

tion type of all the opcode mneumonics, a sct of register definitions, and a sct of addressing mode func-
tions.

The general syntax of a machine code staiement is as follows:
CODE_n'(opcode, operand {, operand}),
where n indicates the number of operands in the aggregaie.

A special case arises for a variable number of operands. The operands arc listed within a subaggregate.
The format is as follows:

CODE_N'(opcode, (operand {, operand)));
For those opcodes that require no operands, named notation must be used (cf. RM 4.3(4)).

CODE_0'(op => opcode),

B-6

The opcode must be an enumeration literal (i.e. it cannot be an object, attribute, or a rename).
An operand can only be an entity defined in MACHINE_CODE or the 'REF attribute.

The arguments to any of the functions defined in MACHINE_CODE must be static expressions, string
literals, or the functions defined in MACHINE_CODE. The 'REF auribute may not be used as an argu-
ment in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names
There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses
Address expressions in an address clause are interpreted as physical addresses.

8. Restrictions on Unchecked Conversions
Nonc.

9. Restrictions on Unchecked Deallocations
None.

10. Implementation Characteristics of /O Packages

Instanuations of DIRECT_IO use the value MAX_REC_SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used
instead. MAX_RECORD_SIZE is defined ir SYSTEM and can be changed by a program before
instanuating DIRECT_]O to provide an upper limit on the record size. In any case the maximum size
supported is 1024 x 1024 x STORAGE_UNIT bits. DIRECT_IO will raise USE_ERROR if
MAX_REC_SIZE exceeds this absolute limit.

Instantations of SEQUENTIAL IO use the value MAX_REC_SIZE as the record size (expressed in
STORAGE_UNITS) when the size of ELEMENT_TYPE exceeds that value. For example for uncon-
strained arrays such as string where ELEMENT_TYPE'SIZE is very large, MAX_REC_SIZE is used
insicad. MAX_RECORD_SIZE is defined in SYSTEM and can be changed by a program before
instantating INTEGER_IO to provide an upper limit on the record size. SEQUENTIAL _IO imposes no
limit on MAX_REC_SIZE.

11. Implementation Limits

The following limits are acwally enforced by the implementation. It is not intended to imply that
resources up 10 or even near these limits are available to cvery program.

11.1. Line Length

The implementation supports a maximum line length of 500 characters including the end of line charac-
ter.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x STORAGE_UNITS. The maximum
size of a statically sized record type is 4,000,000 x STORAGE_UNITS. A record type or array type
declaration that exceeds these limits will generate a waming message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGE_SIZE length specification every task except the main program
is allocated a fixed size stack of 10,240 STORAGE_UNITS. This is the value rctumed by
T'STORAGE_SIZE for a task type T.

11.4. Default Collection Size

In the absence of an explicit STORAGE_SIZE length attribute the default collection size for an access

type is 100 times the size of the designated type. This is the value retumed by T'STORAGE_SIZE for
an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE_UNITS for objects declared statically within a
compilation unit. If this valuc is exceeded the compiler will terminate the compilation of the unit with a
FATAL error message.

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of snuch values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test 1is run. The values used for this validation are given
below:

Name and Meaning Value

$ACC_SIZE 32
An integer 1literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_ID1 (1..498 => 'pr,d09 => 1"
An identifier the size of the
maximum input line length which
is identical to $BIG_ID2 except
for the last character.

$BIG_ID2 {(1..408 => rpr luco => 121)
An identifier the size of the
maximum input line length which
is identical to $BIG_ID1 except
for the last character.

$BIG_ID3 (1..249 => 'A',250 => '3°',
An identifier the size of the 251..499 => 'A')
maximum input line length which
is identical to $BIG_ID4 except
for a character near the middle.

TEST PARAMETERS

Name and Meaning Value
$BIG_ID’4 (1..249 => 'A',250 => t4r,
An identifier the size of the 251..499 => 'A')

maximum input line length which
is identical to $BIG_ID3 except
for a character near the middle.

$BIG_INT_LIT (1..496 => '0',497..499 => "298")
An integer literal of value 298
with enough leading zeroes so
that it 1is the size of the
maximum line length.

$BIG_REAL LIT (1..493 => '0',494,.499 => "69.0E1")
A universal real 1literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

$BIG_STRING1 (1 => 1 2,,200 => 'A',201 => ")
A string 1literal which when
catenated with BIG_STRING2
yields the image of BIG_IDI1.

$BIG_STRING2 (1 2> ' . 2,.300 => 'A',301 => 17,
A string 1literal which when 302 => ')
catenated to the end of
BIG_STRING! yields the image of
BIG_ID1.
$BLANKS (1..479 => ')

A sequence of blanks twenty
characters 1less than the size
of the maximum line length.

$COUNT_LAST 2147483647
A universal integer
literal whose value is

TEXT_I0.COUNT'LAST.

$DEFAULT_MEM_SIZE 16777216
An integer literal whose value
is SYSTEM.MEMORY_SIZE.

$DEFAULT_STOR_UNIT 8

An iﬁiege; literzl whose value
is SYSTEM.STORAGE_UNIT.

c-2

Name and Meaning

TEST PARAMETERS

Value

$DEFAULT_SYS_NAME

The value of the constant
SYSTEM.SYSTEM_NAME.

$DELTA_DOC
A real literal whose value is
SYSTEM.FINE_DELTA.

$FIELD_LAST
A universal integer
literal whose value is
TEXT_IO.FIELD'LAST.

$FIXED_NAME
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT_NAME
The name of a predefined
floating-point ¢type other than
FLOAT, SHORT_FLOAT, or

LONG_FLOAT.

$GREATER_THAN_DURATION
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_THAN_DURATION_BASE_LAST
A universal real literal that is
greater than DURATION'3BASE'LAST.

$HIGH PRIORITY
An integer literal
is the upper bound

value
ranege

whose
of the

$ILLEGAL EXTERNAL FILE NAME?
An external file name which
contains invalid characters.

$ILLEGAL_EXTERNAL FILE NAME2
An external file name which
is too 1long.

$INTEGER_FIRST
A universal
whose value

integer literal

is INTEGER'FIRST.

I1S68K

0.0000000004656612873077392578125

2147483647

NO_SUCH_TYPE

NO_SUCH_TYPE

100000.0

10000000C.0

/illegal/file_name/2}]$%2102C.DAT

/illegal/file name/CE21C2C*.DAT

-2147483648

C-3

TEST PARAMETERS

Name and Meaning

Value

$INTEGER_LAST
A universal integer 1literal
whose value 1s INTEGER'LAST.

$INTEGER_LAST PLUS_1
A universal integer 1literal
whose value is INTEGER'LAST « 1.

$LESS_THAN_ DURATION
A universal real 1literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS_THAN DURATION_BASE_FIRST
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOW_PRIOR.ITY
An intezer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA_DOC
An integer literal whose value
is SYSTEM.MAX MANTISSA.

$MAX_DIGITS
Maximum digits supported for
floating-point types.

$MAX_IN_LEN
Maximum input line length
permitted by the implementatiocon.

$MAX_INT
A universal integer 1i
whose value 1s SYSTEM.MAX_
$MAX_INT_PLUS 1
A universal integer 1literal
whose value is SYSTEM.MAX_INT«+1.

$MAX_LEN_INT BASED LITERAL
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX_IN_LEN
long.

2147483647

2147483648

-100000.0

-10000000.0

31

15

Lag

2147482647

2147483648

(1..2 => "2:",3..496 => '0',
497..499 => ™11:")

C-4

Name and Meaning

TEST PARAMETERS

Value

$MAX_LEN REAL_BASED_LITERAL
A universal real based literal
whose value is 16:F.E: with
enough leading =zeroes in the
mantissa to be MAX_IN LEN long.

$MAX_STRING_LITERAL
A string literal of size
MAX IN LEN, including the quote

characters.

$MIN_INT
A universal
whose value is

integer 1literal
SYSTEM.MIN_INT.

$MIN_TASK_SIZE
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULLs;" as the only statement in
its body.

$NAME
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORT_INTEGER,
LONG_FLOAT, or LONG_INTEGER.

$NAME LIST
A list of
in the type
separated by commas.

enumeration literals
SYSTEM.NAME,

$NEG_BASED INT
A based integer literal whose
highest order nonzero bit
falls in the sign it
position of the representation
for SYSTEM.MAX INT.

$NEW_MEM SIZE
An integer literal whose value
is a permitted argument for
pragma MEMORY SIZE, other than
$DEFAULT _MEM_SIZE. If there is
no other value, then use
$DEFAULT_MEM_SIZE.

(1..3 => m6:",4,,495 => 0",
496, .499 => "F,E:")

(1 => ™1, 2,898 => 'A',499 => tn)

-2147483648

32

TINY_ INTEGER

IS68K

164#FFFFFFFD#

16777216

TEST PARAMETERS

Name znd Meaning Value

$NEW_STOR_UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE _UNIT, other than
$DEFAULT_STOR_UNIT. If there is
no other permitted value, then
use value of SYSTIM.STORAGE_UNIT.

$NEW_SYS_NAME IS68K
A value of the type SYSTEM.NAME,
other than $DEFAULT_ SYS_NAME. If
there is only one value of that
tyoe, then use that value.

$TASK_SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

$TICK 0.01

A real literal whose value 1is
SYSTEM.TICK.

C-6

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 43 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

E28005C has been withdrawn because it expects that the stiring "--
TOP OF PAGE. -=63" of 1line 204 will appear at the top of the
listing page due to a pragma PAGE in line 203; but line 203
contains text that follows the pragma, and it is this that must
appear at the top of the page.

A39005G has been withdrawn because 1t unreasonably expects a
component clause to pack an array component into a minimum size
(line 30).

B97102E has been withdrawn because it contains an unintended
illegality: a select statement contains a null statement at the
place of a selective wait alternative (line 31).

BC3009B has been withdrawn because it wrongly expects that
circular instantiations will be detected in severzl compilation
units even though none of the units is illegal with respect to the
units it depends on; by AI-0025f, the illegality need not be
detected until execution is attempted (line 95).

CD2A62D has Dbeen withdrawn because it wrongly requires that an
array object's size be no greater than 10, although its subtype's
size was specified to be U0 (line 137).

CD2A63A..D, CD2A66A..D, CD2AT3A..D, CD2A76A..D [16 tests] have
been withdrawn because they wrongly attempt to check the size of
objects of a derived type (for which a 'SIZE length clause is
given) by passing them to a derived sub-program (which implicitly
converts them to the parent type (Ada standard 3.4:14)),
Additionally, they ‘use the 'SIZE 1length clause and attribute,

D-1

WITHDRAWN TESTS

whose interpretation is considered problematic by the WG9 ARG.

CD2A81G, CD2A83G, CD2A84M and N, and CD50110 have been withdrawn
because they assume that dependent tasks will terminate while the
main program executes a loop that simply tests for task
termination; this 1is not the case, and the main program may loop
indefinitely (lines 74, 85, 86 and 96, 86 and 96, and 58,
respectively).

CD2B15C and CD7205C have been withdrawn because they expect that a
'STORAGE_SIZE 1length clause provides precise control over the
number of designated objects in a collection; the Ada standard
13.2:15 allows that such control must not be expected.

CD2D11B has been withdrawn because it gives a SMALL representation
clause for a derived fixed-point type (at line 30) that defines a
set of model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point ¢type must be representable values of the
parent type.

CD5007B has been withdrawn because it wrongly expects an
implicitly declared subprogram to be at the the address that is
specified for an unrelated subprogram (line 303).

EDTO04B, EDT7005C and D, ED7006C and D [5 tests] have been
withdrawn because they check various aspects of the use of the
three SYSTEM pragmas; the AVO withdraws these tests as being
inappropriate for validation.

CD7T105A has been withdrawn because it requires that successive
calls to CALENDAR.CLOCK change by at least SYSTEM.TICX; however,
by Commentar—+ AI-00201, it 1is only the expected frequency of
change that must be at least SYSTEM.TICK--particular instances of
change may be less (line 29).

CD7203B and CD7204B have been withdrawn because they use the 'SIZE
length <2lause and attribute, whose interpretation is considered
problematic by the WG9 ARG.

CD7205D has been withdrawn because it checks an invalid test
objective: it treats the specification of storage to be reserved
for a task's activation as though it were like the specification
of storage for a collection.

CE2107I has been withdrawn because it requires that objects of two
similar scalar types be distinguished when read from a
file--DATA ERROR 1is expected to be raised by an attempt to read
one object as of the other type. However, it is not clear exactly
how the Ada standard 14.2.4:4 is to be interpreted; thus, this
test objective is not considered valid (line 90).

D-2

p.

WITHDRAWN TESTS

CE3111C has been withdrawn because it requires certain behavior
when two files are associated with the same external file;
however, this is not required by the Ada standard.

CE3301A has been withdrawn because it contains several calls to
END_OF LINE and END_OF PAGE that have no parameter: these calls
were intended to specify a file, not to refer to STANDARD INPUT
(l1ines 103, 107, 118, 132, and 136).

CE3411B has been withdrawn because it requires that a text file's
column number be set to COUNT'LAST in order to check that
LAYOUT_ERROR is raised by a subsequent PUT operation. But the
former operation will generally raise an exception due to a lack
of available disk space, and the test would thus encumber
validation testing.

D-3

